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ABSTRACT

' The indeterminacy of the reduction of an arbitrary matrix to Jordan

normal form is used to study the Lurle canonical equations for a linear

control system with a single nonlinear actuator. The Lurle transformation

is shown to be essentially a scaling operation applied to an arbitrary

transformation which reduces the system to Jordan canonical form. In the

case of nonlinear elementary divisors, the proper choice of canonical

variables simplifies the calculation of stability conditions.
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AN ALGEBRAIC PROBLEM IN CONTROL THEORY

Arthur Wouk

1. In the series of papers in the early forties summarized in [1], [2],

A. I. Lur'e showed how to utilize Liapunov's second or direct method in the

investigation of the stability of linear automatic control systems with a single

nonlinear actuator. His approach consists of

1° the transformation of the original system of differential

equations via the so-called Lur'e transformation into

canonical coordinates in which the construction of the

Liapunov function is direct, and

2' the conversion of the differential problem into a purely algebraic

problem.

We will be concerned here with the questions of the existence and con-

struction of the Lur'e transformation.

A system with a single nonlinear actuator is described by a system of

differential equations (cf. e. g., Hahn [5], p. 42):

y' = Ay+ up

(1)

uI f(s), s = (b,y) - hu, h>0
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where ' =d/dt, Ais areal constant nxn matrix, b and p* 0 are real

constant n-vectors, (,) denotes scalar product, and f is a real continuous

nonlinear function such that sf,(s) > 0 . Here the vector y represents the

physical state of the system, the scalar u represents the amount of control

to be utilized and the vector p represents the distribution of the control u

among the state variables. An error signal s is constructed from the deviation

of y from a plane normal to the vector b ; modified by a multiple of the current

control u, it signals an actuator whose response is characterized by the non-

linear function f(s) . In many physical systems, the ability to control state

variables is limited to those state variables which represent physical velocities;

only their derivatives may be changed (Newton's Laws of Motion.) Thus a

physically significant problem is one in which A, p, f are assumed as given;

the physically interesting problem of stability is that of selecting a vector b

such that the solution y = 0 of (I) is asymptotically stable in the large, (cf.

e.g., [41 p. 7-8) for all functions f out of a suitable class of functions.

(This means that all solutions of (1) tend to zero as t - oc .) It should be

noted, however, that in many electronic systems, all the variables in the mathe-

matical representation may be controlled.

We note first (compare Hahn, [5], p. 43) that the transformation to the

desired canonical coordinates is accomplished by a Lur'e transformation

y = Bx + uq

which converts (1) into the form
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x' = Dx + mf(s)

(2)
s'I = (CAx - hi(s)

Here D is the Jordan normal form of A, c = BTA Tb (T denotes transpose) and

m is avector with m. =1 or 0, i=l, ... ' n . It is easy to see that we
-1

require B to be a nonsingular matrix such that B-1 AB = D and that Aq - p

B-lq =-m, or

(3) ABm = p

The choice of m. as either 1 or 0 is a normalization for the convenience1

of analysis and exposition. What is important is the vanishing or non-vanishing

of m.; should m. vanish, then the corresponding canonical variable x. isI. 1 1

not directl controlled by the actuator. (It may, however, be indirectly controlled.)

Lur'e [1] (see also [2], pp. 38-47) gives certain algorithms, valid for the case of

a matrix with n distinct characteristic values, in determinantal form, for what

is, in effect, a construction of B and q . In these determinantal algorithms,

the geometric meaning of the manipulations is not clear, and the construction

fails for the case of multiple characteristic values. We will exhibit a procedure

which determines the possibility of construction of the Lur'e transformation as it

constructs it; it will be seen that the algorithm of Lur' e valid for matrices with n distinct

Hahn(J5j, p. 43, p. 138) first observed that it is not always possible to have
m =i, i=1, ... , n; i. e., some zero values may be necessary if p is orthogonal
to characteristic vectors of A
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characteristic values results in no more than the special scaling of an arbitrary

B which transforms A to Jordan normal form so as to set m. = 1, or 0 . We1

will show that the question of which canonical variables can be controlled

(mi # 0) can be resolved by knowing any matrix B which reduces A to Jordan

normal form.

Recently, Yakubovich has shown that the transformation to canonical

coordinates is unnecessary from the point of view of theory (cf. [3] pp. 75.-103,

in particular pp. 75-91 or [8] pp. 129-123 for expositions in English of his work.)

That is to say, the conditions of Lur'e for the stability of the controlled system

are derived by matrix theoretic methods which do not directly utilize the Jordan

normal form. Hidden in the theory is the necessity for solving the matrix

equation A TL + LA = - C for any prescribed positive definite symmetric matrix

C . In fact this is a very difficult matter if A is not in Jordan normal form.

Thus, at the point of application it remains necessary , (cf. e. g. LaSalle and

Lefschetz [3] pp. 91-103 for the case where this form is diagonal), to utilize the

transformation to canonical coordinates in order to establish computable constraints

on the control variables p, b and h of tl) which lead to desired stability

properties. (In this regard, see also [4]. ) Thus it remains necessary to determine

which sets of canonical variables may be achieved by this reduction, what

effects, if any, this indeterminacy in the reduction has on stability, and which

canonical variables permit easiest calculation of stability criteria.

Lastly in an appendix we will relate these results to those of Kriuchkov [9]

which construct a "canonical form", other than the Lur'e form, which need not
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preserve the stability properties of the original system. We will see that the

Lur'e form is, in suitable modification, always achievable, and that stability

is always preserved.

Z. We note first that if we set p = Bp, then (3) becomes Dm = p . Thus,

for a given B, the decomposition of p along the basis consisting of the column

vectors of B, bl, ... , b, determines the possibility of finding m . If m

exists, it is unique up to a solution of the homogeneous equation Dm = 0, i. e.,

to an arbitrary vector in the null space of D while p must be orthogonal to

the null space of D . Thus p must be orthogonal to the null space of A

Henceforth this is always assumed.

Next we note that if X .# 0 is a characteristic value of A(and D) possessingI

two or more linearly independent characteristics vectors, then there exist two

columns of B, b. I bi2 satisfying Ab. X.ib., j = 1, Z If Pi and are

both nonzero, than we must have p.I= p. " To see this, note that Dm = p
11 12

implies X ,m. = Pi. Since Xi, p.I and Pi are not zero, then we must have
J J

m. = 1, j = 1, Z andp,1 = Pi = X . This however, is only an apparent restriction,
1 2

for we can always rescale p by renormalizing the characteristic vectors bil,

bi, ... , so that Pi = (b. , p) is a constant for all characteristic vectors
SJ

belonging to a given nonzero characteristic value. Note that this entails, with

therenormalization of b. , the renormalization of the other columns of B which

are in the same cyclic invariant subspace as b.

On a given cyclic invariant subspace corresponding to an elementary divisor
k,

1i) 1 , D has the representation
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k. 1

1

(4)

\, 1
1

>li

If the relevant components of m and p are indexed by j1 1 "-1' jk' we find

that on this subspace (3) is equivalent to

X~m. +m. Jl p.
X il MjI+mi2 = l

Sm, +m, =p,
1 2 33 2

X.m. + m = P
1 ]k-l k k k-l

X~m, p.
' mk 3k

From these equations, it becomes clear that (3) is not in general solvable for

m. = 1 or 0, and the construction of the transformation, is not immediate. Further1

it seems that renormalization of the b.k might not effect equality of other pi's

belonging to distinct invariant subspaces corresponding to the same X, . It

might appear from this that the restriction of m. to the values 1 or 0 is at fault
1

here. If m.1 were allowed arbitrary values, then the numerical value of the p.
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would enter into the determination of the m,; we shall see below that this is
1

misleading: only the vanishing and non-vanishing of some of the pi are

significant to this determination.

3. The starting point of our procedure is the observation that the

transformation to Jordan form of A is unique only to an arbitrary nonsingular

matrix V which commutes with A, for then (VB) "1A(VB) = B 1AB = D. Hence-

forth we assume that we know a matrix B which reduces A to D. The construction

of such matrices B is well known (cf. e.g., [6] p. 66-69 or [7]p. 159ff.). We can

restate our problem as the determination of a matrix V which commutes with A such

that under the transformation y = VBz + uq the system (1) goes over into (2) where

c = BT V TA b, and in addition

(5) AVBm = p.

Hence q =-VBm. (We omit components in the null space of A.)

In terms of the gi-ven nonsingular matrix B, p can be decomposed

uniquely as

n
p P Pibi= Bp

i=i

for a unique vector p2 with components p"' Pnp Among the matrices which

comute with A are the polynomials in A, say
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n-i
g(a) a i A'.

i~1

Unfortunately, if any two elementary divisors of A have a nonlinear common

factor, a suitable V may be found in this way only for restricted classes of

vectors p (see below). Instead, we observe (cf. e.,g. [6], pp. 143 ff. or [7]

pp. 220-ZZ3) that the set of matrices V which commute with A is generated by
-l

V= B UB where U runs over the set of matrices which commute with D. Then

(5) can be rewritten as B IAVBm p or

(6) DUm UDm=p.

4. in order to construct the desired nonsingular matrix V, we must

study the block structure of U, which is dependent upon the elementary divisors

of D. If these are

r r r
12 q(k -kl) (% - %Z ... ,( - q)

then([ 6 ]p.144or[7]p.218) U is decomposed into blocks U=, c• = , ... , q

where U is a rectangular matrix with r rows and r columns. Further,

U a is a zero matrix if X P Xk, while it is "upper triangular" if X= X

("Upper triangular" for an m row, n column matrix M means Mij 0 if

j < i + max (0, n - m) ; for square matrices this is the usual definition. ) Lastly,
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the elements along each diagonal of U apare constart. Thus each block contains

min (r ,r )arbitrary parameters. It would therefore appear that we have sufficient

freedom to restrict the class of matrices U among which we look for our solution,

possibly to upper triangular matrices (U ap=the zero matrix if a > P. ) It will be

seen below, however, that this can be done only in special circumstances; this

will explain in part our inability to find U among the matrix polynomials in D.

We will prove first two lemmas, one guaranteeing the solvability of

(6) for arbitrary p, the other guaranteeing the nonsingularity of U.

It is evident from the description that we can restrict our attention to the

invariant subspaces associated with a given nonzero characteristic value, say

) Isince U and DU are reduced to block diagonal form with respect to these

subspaces. Let W denote the block in U which corresponds to X * We rewrite

the form of (6) on such a subspace as follows. Let (X -X 1 ) 1 - p -X1)kI

r 1>r > . ..> r k>1I be the elementary divisors associated with X I. Let the

index pair [i, tQ denote the index.

Zr + t

where t ) k (The sum is taken as zero when i I.

Let (U a) ijz aPiji .. rjl,.raP= 1, ... ,k. Since

UaP is upper triangular, it follows that z~ P, i - must vanish if j <i+ max(O, r P- r

On the other hand, the matrix product DU UD has the same block structure as
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U, with elements z' z I + z (We extend thea1 j3, i-j 1e a,3 i-j a, •, i-j+1l W xtn h

definition of zd i p, i-j by setting it equal to zero if i or j are outside their

respective ranges 1i..., r and 1, ... rp) . Let W1 be the block in DU which

corresponds to W. Then (6) becomes

k r•

(7) = j~ api,. [pj] -ie, i]' i= 1, ...Z rZ e= 1, ... , k

If we take m[ P[ j] as given, and hopefully I , then (7) is to be viewed as

r + ... + rk equations in the unknowns zip. There are

k k
m = min(r r ) =r I+3r +... +(Zk-l)r

a=l P=l

such unknowns. Thus we have more unknowns than equations. Solutions exist

if the equations are consistent. The consistency conditions may be expressed

in terms of an auxiliary matrix M which we determine thus: enumerate the z'

variables so that

Z ~ l I , = i 0 * * * =2 Zrl i 1 - r 1

+1 - 0 . . . Z
,rI + I Z~•Z • r+rZ 1, 2, l-r 2
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ZI -_Z! Zt--

+ "" +rk-l + 1 1, k, 0' r +... +rk , k, k

r1+... +rk +1 Z,l,l-(r1-rZ) r +... +r k+r2 Z, 1,1-r1

rl+... +rk + r + 1 ,Z2, 0' ....

That is; we start with the upper left corner of the 'V' matrix and

enumerate from left to right in each row, those elements za in the lstc=, f3, i-j

rl+l st", rl + '+rk-I + l t st rows for which jI > 1 + max(O0r -r ).

Then Mz' p where M is a rectangular matrix of the following block form:

M 
F

where M. is a matrix of r. rows, irI+r +r +... + rk columns. If we

subdivide M. into blocks of ri, ... , r, r,+ , rk columns, then the jtth
. 1 1

block has the form of the following ri x r. matrix
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m [j,r. - r. + 1] I [ ,

[ j - []m[j, r.

m [ j ., r i0].

if j < i) while it has the form

m~j 1 mD ., 2] ... m r]

meD, 2] m.., rm 0

m[j, rj- 1] m[j., r]

m[j, r 0]

Lo

if > 
m

[j 1 j,2] ,:.
oL

mf m 0
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From this structure, it follows that the assignment meP, t] 1 provides

a matrix M which is of maximal rank, since its rows constitute an independent

set of rI + ... + rk vectors in an m-dimensional space. In fact, it is sufficient

for this if m # 0; then the lst block of M, is a square nonsingular

matrix. On the other hand, m r ] 0 makes the rank of M less than r +... +rk

so that the existence of DU solving (6) is not guaranteed for arbitrary vectors p.

We have proven the following:

Lemma I: m[1, rl] 1, is necessary and sufficient for the solvability of (7)

for arbitrary p.

k
There are (Zj -2) r, independent parameters in the Wt matrix whose assignment

j~l
leads to a solution of (7) with me[p ,] 1 1,... k, j 1,..., rp. If, as

would be desirable for computational purposes, the matrix U is sought among the

class of upper triangular matrices, the following changes must be made in the

preceding analysis. W and Wt are now upper triangular matrices and (7) specializes

to

k r
(72) Z z* a c k.

7) p= j=l a, p, i'jm[P'] = 1[a'i]' i= 1,... ,r, = 1, ... k

The number of unknowns z* is now
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m k
Z min(r r) -r1 + Zr2 + ... + krk

which still exceeds the number of equations. We proceed as before in the enumeration

of the elements of z%, i. e. from left to right in W1, but now

z1 ZI

r +r +...+rk+l zZ Z, ' 0'

r 1 +2r Z+... +rk +1 z'3, 3, 0'

M is now a rectangular matrix of r. rows, ri + ri+I +... +rk columns whose j~th

column block is given only by the second of the forms above, that for j = i+ p - I> i.

The assignment m[p t] 1 provides a matrix M of maximal rank, as before.

However, in this case m r.] r 1 makes the first column block of M, a non-

singular square matrix, while if any m[j, r 0, the corresponding M, has a

row of zeros. We have then

Lemma F: m-[j, r.] = -, ... k is necessary and sufficient for the solvability

of (71) for arbitrary p.
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kThere are (j -l) r, independent parameters in the Wt matrix whose

assignment leads to a solution of (7t) with m[p j 1, j , r, , k.

5. We wish next to guarantee the nonsingularity of U. Again, owing

to the block structure of U and DU, we work on the invariant subspace associated

with # 0 ; there the nonsingularity of DU and U are equivalent. The

singularity of DU or W2 there is equivalent to the existence of a set of numbers

S[P j] k: j 1 i ... . r,, not all zero, such that

(8) z2 , i=
(8 1=1j=l a, • i-i [• j] =0, i~,.ra-,.,k

Set i = r , a=l1 ... k, and consider the resulting k equations

k(9) Z Z .0

1=1 z, , rl-r 1  [1, rl] 0, a= 1, , k

If the determinant of the auxiliary k x k matrix (z t  r r) is not zero, then

we must have S[wuh r ]=0, -1, ... ,k, and (8) can be replaced by

(10) 6 [ = 0, i=l, ... r -l,a=l, ... k.
P=1j~ l a, 1 i-j [1, j] -"

Now set i = r -1, a= 1, ... 1 k. There results the system of equations
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k SzT 0 -e Ok -- Ij kZ-- •'p rar [p, •l]~ 0  ""1,. "k-"

The nonvanishing of the determinant of the auxiliary matrix again implies

6[ r 0, - ... k. We may proceed in this manner for exactly rk

steps. Suppose that r >rk if i ,...; s while r - rk is i s + , ... k.

Then it follows that z , =0 if a<s and P>s+l. Thena, f3, r• - rp --

detl_< a, P_< k (z aP, r-r )detl<_ aP_< s(Za, Pr-rP) x dets +I_< a"P_< k(ZaPrr;)"

Then, at the end of rk steps, the successors to equations (10) become

s r - rk

(10o) Z z, 61P, o i=1, r

Now only the s x s~th principle minor of the auxiliary matrix remains. This is

non-singular if and only if the auxiliary matrix is non-singular. We may proceed

in this manner to show that if det (zI a r rp ) 0 0, then WI is nonsingular.

On the other hand, if det (z' , Pr.-r ) = 0 then (9) has a nonzero solution;

then we can, by elementary column operations on WT, construct a matrix k of

whose rows vanish, so that the matrix is singular. Since elementary column operations

are themselves nonsingular, this proves
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Lemma II:

det (z ) 0

is necessary and sufficient for the nonsingularity of W'

If all r are distinct, so that (zza,,r -r ) is a lower triangular
ar ra

matrix, or else if we seek an upper triangular matrix, U , condition ( 11) becomes

k
( i11) II z1  # 0H =i 0,e 0 0

a=l 1,

6. Next we establish the conditions for the existence and nonsingularity

of the matrix U. We may still restrict attention to the block W1 in DU

corresponding to a single nonzero characteristic value X . In (7), set

i = r , 1= 1, , k. This yields the set of equations

k

(•2) Z a,r. r m[p,r] P[,r]' [a, r" k.

eC

If P[ae,r =0, a= 1,., k, then it is impossible to have any

m # 0 and simutaneously, a nonsingular z' - matrix (or, by Lemma II
a ns]

a nonsingularmatrix W1 .) Thus we must set m~ere = 0, a= 1, ... , k and
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can choose z r at will so as to satisfy (11)a, 3, r -rp

Next consider the situation where p(a, r] 5 0. Suppose first that

rI >r Z. Then z'la,r -rk=0,a'=2,'.. ,k; if p[1, rl]#0, then(1Z) maybe

solved for a nonsingular lower triangular z' - matrix and a vector m r 1,

- 1, ... , k. We need only set Z2 1, 0 P[l, r and

a, 1, ra -r1 1 , 4, 0 [ a ra

while all other zX ra) rr 0 . This can always be done so that both (11) and

(1 1P) are satisfied and the matrix W2 is nonsingular.

If r I=rZ=... -r s < k, and at least one of p[a, ra] O0,--< a_< r,

then we may reorder the basis b, so that is again not zero, and proceed
1 P[l, rl]

as above. It is also possible to have m[ 1 , r11  1, m[P, 0 or 1 at will,

S, Z..., k, and preserve the non-singularity of W2. Thus to have m[f r ] 0 '

set z' 1, rp=r 1  P[1P, rI]' zSP, P, 0 #0.

If, however, p[arj] 0, a= 1, ... I s, then we must set m a, r 0,

a = 1 .. , s. Otherwise, the matrix whose elements are z 1  a, P,=l, ... , s

would be singular. Since the other elements of the first s rows of the z' matrix
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are zero, this implies the singularity of the z' matrix, and by Lemma II) the

singularity of the W1 matrix. When m [a, r] [ r a]` 0 1 S)

the quantities z2 a, r. 1 -- , ... 1 s may be chosen as an arbitrary,

nonsingular s x s matrix. The question of the nonsingularity of the zt matrix

is now reduced to that of the nonsingularity of the k-s x k-s matrix za

with ap- r + 1, ... 2 k. The argument above applies without exception to this

submatrix.

Now suppose that m r] P - 1, ... , k, and the nonsingular

auxiliary k x k matrix (z .r-r) have been chosen. The remaining

equations of (7) can be written as

k% r

j l ajm[P'j] = p[a'i]-p.[ar a

where k' < k is such that r 1, k' < a < k. With appropriate identification of

terms', this system is of the same form as (7). Hence Lemma I may be applied to

(13). We conclude that the assignment

m[P, r-l] I., k'

is necessary and sufficient for the solvability of (13) for any vector. The

remaining elements of the m-vector may be chosen as 0 or 1 at will.



-20- #39Z

We summarize these results as follows:

Let X f 0 be a characteristic value of A with elementary divisors

rIkrk

(X-Xl) ,..., (I-x ) , rI > rz> ... > r >k 1 and characteristic vectors

bl, ... ,bk. Let (bi, p) =0•i=l,..., s-i while (b ,p) 0 O. Let
- S

r 1 >ra r 1""r =a +. = rt >rt +i Then the assignment
s s s s s

m =0. a -i[a, r] s

m -A,2[a ,r ]
5

assures the existence and permits the calculation of a nonsingular matrix U

which commutes with D and satisfies (6) . The remaining elements of m may be

taken as 1 or 0 at will.

The choice of m[a ,r ] in the above statement is not essential; any
5

one of mIa, ra] could be chosen to be 1i a< a < ts and the statement remains

true. Further, at least one of them must be so chosen.

The matrix U can be chosen among the upper triangular matrices if and

only if (bi, p) 0 0 for. at least one characteristic vector b, belonging to each set

of elementary divisors of given exponent. To see this, consider again equations

(71). Here z' = 0 if r # r * Repeating the preceding analysis leads
a 3 Psserto ui a

to this form of the assertion, using Lemma Iz in the place of Lemma I. Lastly,
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if the elementary divisors have no nonlinear common factors, then U may be

realized as a polynomial g(D) , after renormalization of the corresponding

characteristic vectors. To see this, note that this implies that U may be

taken as a block diagonal matrix, each block of which is precisely of the form

which is realizable by a suitable interpolating polynomial in D (see, for instance,

[ 6 ],pp. 62-63 or [7], p. 100 .) If the elementary divisors are all linear, then

D is diagonal and U is determined by (6) as a diagonal matrix, used only

for scaling purposes.

Thus the particular transformations described by Lurle are seen to

effect only the scaling of min, when they are correct, i. e., in the case that A

has n distinct characteristic roots.

The preceding treatment leads to complex transformations, if the

matrix A has complex characteristic values. Since Ax = Xx + y if and only if

Ax = >.. x + y (' denotes complex conjugate) when A is real, the equivalent

real transformations can be constructed which lead to the real Jordan normal form,

in the usual manner. The reality of p and b implies that all operations associated
*

with the characteristic value X are exactly parallelled in the treatment of X

and the final form (2) can be chosen with the control f( s) present (mi = 1) in

precisely one pair of equations belonging to each pair of characteristic values

X, k • for which (p, bi) 0 0 for some non-zero characteristic vector b

belonging to k.
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7. The indeterminacy in the form of m allows us to raise two questions.

Firstly, does this indeterminacy lead to different stability criteria? Secondly,

does this indeterminacy permit simplified calculation of conditions which

guarantee absolute stability? The first question is answered as follows. Suppose

that a matrix B has been calculated and the equations are in a real Jordan normal

form (Z) ; let another canonical form

(2') Dx+ rf(s)

(Z')

t s' = (c, x) - hf(s)

be achieved by the matrix U where U commutes with D and is non-singular.

Then = U m and c =U c. The Lurle special Liapunov function implies

absolute stability if and only if

(14) h > (A I[Lm+ 2c], [Lm+ 1c])

where A is some real symmetric positive definite n x n matrix and L is the

unique real symmetric positive definite solution of the matrix, equation A + LD=-

(cf [3], p. 85 or [8], p. 122.) Then
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( I[ +½-[Lm+ L+ ])- (UT u)-I[(uTu)+½ ,[(Tum½)

while

T T T TD (UTLU) + (U LU)D= - uTAU.

From this we conclude that a triple (h, m, c) makes (Z) absolutely stable if and

only if the triple (h, m, c) makes (21) absolutely stable. This answers the first

question negatively. The second question can be answered affirmatively. Notice

first that the stability criterion (14) depends upon the calculation of the solution of

(15) D TL+LD= -A;

this is not readily calculable for arbitrary positive definite matrices. Even for

3 x 3 matrices the computations are too cumbersome unless, as is customary, we

make A a diagonal matrix. This yields sufficient conditions for (14) which in

turn is only sufficient for absolute stability. If we solve (14) for all sets of h

a-id c which satisfy (14) for a given m and some positive definite diagonal

matrix A, we obtain stability criteria which depend upon the form of m. If X is

a characteristic number with many elementary divisors, and m has many non-zero

components, this leads to cumbersome calculations. If we replace m by m,

with only one non-zero component for each distinct characteristic number X, the

work is easier. As an example, suppose that D is
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x 1 0
I0 % 0

0 0

where X < 0. Then (15) becomes

I I 11 13 0 1 10-6 10 011i 12 13 0 ii 0-10

2 21 1 2 1 23 + f 1 21 1 130 -6021•Z 22 2Z3 11 ii ZI 12 1 0-2 0

I31 32 133 0 1 13 0 0 0 -63

Then L is

- / 5 z/4\2

-61/X6 1/4X.. Z 4 0

61/4X -62/ZX -2 1/4X3

0 0 -63/ZX
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If mI 0, m = 1, m -3 0, then (14) becomes

-l 2- 2 -l /3 2 -1- 2h>8 (51/4X +c/I +6 (-6z/Z)"-.1/Q. + +53 (c/2

Clearly c 3 is unrestricted. If both c and c are non-positive, the right side

can be made arbitrarily small for suitable choice of A. If c > 0, then for any

61, the second term is minimal if 62 = 6 /2x - > 0 with minimal value

6 i/Zx4 - Cz/. Thus sufficient for absolute stability is

h > 961/16x4 + cIZ/461 + cl/4X2 - cZ/ .

If 61 = Z c 1 1/3 the right side is again minimized and a stability criterion can

be written as

h > E (c 2) 1 4}

where E(t)=O if t<0, while E= 1 if t >0.

Suppose now that the reduction of (1) to (2) had yielded m1  m2  m3 = 1.

Then U can be taken as
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1 1 0

0 1 0

0 1 0

- T
since c Tc, we have

C ~C
CI = +c1+

cz C 1 + CZ + C3

C3 = 3

and sufficient for absolute stability is

.h>•(clcz~c3+c 31c 11+ I+ 2 +C3
ýh> E(c I +C z +C 3) 2 XzX }

In the present case the saving in effort is small but noticeable. If the exponents

of the various elementary divisors had been higher, the saving would be more

significant.
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APPENDIX

Kriuchkov [ 9] (in our notation) represents the fundamental matrix
At

e of the homogeneous system y' 1  Ay as a linear combination of the terms of

the form t) e with matrix coefficients which are the so-called components of

A. In this form, the highest power t which appears is one less than the power

of (X - k ) which appears in the minimal polynomial of A (cf. e. g., [ 5], p. 110 ff.)°

If k is the degree of the minimal polynomial, then the solution of the system

(16) y' =Ay + up

u =f(s) , s =(b, y)

is represented, using the variation of constants formula, as

Aty= e yo+ G•

where G is a certain constant n x k matrix and ý is a particular solution of

(17) A• + mf(s)

Here A is a k x k matrix in Jordan normal form whose characteristic (and

minimal) polynomial is the minimum polynomial of A, while the projection of
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m on each invariant subspace of A has component one along the characteristic

vector and zero elsewhere. Should X. be a characteristic root with positive1

real part, of greater multiplicity in the cnaracteristic equation than in the

minimal equation of A the stability of ( 17) does not imply the stability of (16).

This, however, is not the Lurle transformation, as constructed above. The

calculations above show that there is a vector m, and nonsingular matrices

B and V such that y = VBz transforms (16) into

z' Dz + mf(s)

s (c, z)

where D= BAB, c= B V b, and V is a matrix which commutes with A.

In this instance, equation (5) becomes

(53) VBm p.

Setting

V BUB I

we obtain
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(6') Um = p

where U is an arbitrary matrix commuting with D. It is easy to see that

the construction used for DU is now a construction for U. This Lur'e

transformation, however, clearly preserves stability and instability properties.
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